Die Kristallstruktur von Mn₁₅Si₂₆

(Mangansilicide vom Typ $Mn_n Si_{2n-m}$)

Von

G. Flieher, H. Völlenkle und H. Nowotny

Aus dem Institut für physikalische Chemie der Universität Wien

(Eingegangen am 19. Juni 1967)

Neben dem bereits bekannten Mangansilicid $Mn_{11}Si_{19}$ (MnSi_{1,727}) werden folgende neue Verbindungen des Typs Mn_nSi_{2n-m} nachgewiesen: $Mn_{26}Si_{45}$ (MnSi_{1,730}), $Mn_{15}Si_{26}$ (MnSi_{1,733}) und $Mn_{27}Si_{47}$ (MnSi_{1,741}). Die Kristallstruktur von $Mn_{15}Si_{26}$ wird mit Hilfe von Fourier- und Differenz-Fourier-Synthesen bestimmt. Die Gitterparameter für die tetragonale Elementarzelle (I42d — D_{2d}^{12}) betragen a = 5,525 und c = 65,55 Å.

Besides the manganese silicide $Mn_{11}Si_{19}$ ($MnSi_{1.727}$) already reported, the following compounds of the general formula Mn_nSi_{2n-m} have been observed: $Mn_{26}Si_{45}$ ($MnSi_{1.730}$), $Mn_{15}Si_{26}$ ($MnSi_{1.733}$), and $Mn_{27}Si_{47}$ ($MnSi_{1.741}$). The crystal structure of $Mn_{15}Si_{26}$ has been determined by means of Fourier- and Fourierdifference-synthesis. The lattice parameters for the tetragonal unit cell ($I\overline{4}2d - D_{2d}^{12}$) have been found to be: a = 5.525 and c = 65.55 Å.

Bei der Untersuchung von Übergangsmetall-Siliciden und -Germaniden der allgemeinen Formel $T_n \operatorname{Si}_{2n-m}$ und $T_n \operatorname{Ge}_{2n-m}$ hat sich ein neues Bauprinzip ergeben, das in Korrelation mit der Größe *m* des stöchiometrischen Unterschusses (Si- oder Ge-Defekt) steht*. Dies wurde zuerst an der Kristallart Mn₁₁Si₁₉ aufgefunden^{1, 2}, später aber auch an einer Reihe

^{*} T =Übergangsmetall.

¹ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 681 (1963).

² O. Schwomma, A. Preisinger, H. Nowotny und A. Wittmann, Mh. Chem. **95**, 1527 (1964).

weiterer Verbindungen beobachtet^{3, 4, 5, 6, 7, 8}. Insbesondere zeigte sich beim Mo—Ge-System, daß derartige Phasen in eng benachbarter Zusammensetzung mit verschiedenen Vervielfachungen der Unterzelle (nach *einer* Achsenrichtung) auftreten. So wurden mit Einkristallen die Phasen $Mo_{13}Ge_{23}$ (Ge/Mo = 1,769)⁴ und Mo₉Ge₁₆ (Ge/Mo = 1,778)^{4, 9} nachgewiesen, während Mo₂₃Ge₄₁ (Ge/Mo = 1,783)⁴ bisher nur durch Pulveraufnahmen festgelegt wurde.

Obwohl auf den Existenzbereich des Mn—Si-Defektdisilicids bereits früher eingegangen wurde, sei noch auf eine kürzlich erschienene Arbeit von *Fujino*, *Shinoda*, *Asanabe* und *Sasaki*¹⁰ verwiesen; diese Autoren gelangten aus Einkristallen der Zusammensetzung MnSi_{1,72} wieder zu einer Zelle, wie sie ursprünglich von *Borén*¹¹ angegeben wurde. Ferner sind ohne detaillierte Angaben folgende Zellabmessungen für ein Mn-Silicid der Formel MnSi_{1,7} zu finden: a = 5,49 und c = 112,42 Å¹². Danach sind für den Bereich MnSi_{-1,7} ähnliche Verhältnisse zu erwarten wie bei MoGe~_{1,8} und in den ternären Defekt-Gallogermaniden⁵.

Es wurden daher neue Probenansätze in diesem Bereich erschmolzen und nach Möglichkeit Einkristalle isoliert. Zur Herstellung der Proben wurden wie üblich Pulvermischungen aus Elektrolytmangan und reinem Silicium (99,9%, Péchiney) zu Pillen verpreßt und in Argonatmosphäre im Hochfrequenzofen zur Reaktion gebracht. Gelegentliche Homogenisierung erfolgte in abgeschlossenen Quarzröhrchen bei 1000° C*.

Die Pulveraufnahmen von verschiedenen Ansätzen im oben genannten Bereich bzw. von verschieden wärmebehandelten Proben ergeben wieder charakteristische Unterschiede und lassen auch die Besonderheit in der Frage der Auswertung deutlich erkennen. Wie schon früher bemerkt, sieht man praktisch keinen Unterschied im Aspekt der Röntgenogramme, was die starken Interferenzen der Unterzelle betrifft. Diese Tatsache verleitet deshalb sofort dazu, die geringen Änderungen im Glanzwinkel durch die Existenz eines homogenen Bereiches zu deuten. Gerade dies ist aber

⁶ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 98, 176 (1967).

^{*} Frl. S. Setz danken wir für die Herstellung einiger Mn-Si-Proben.

³ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 95, 1538 (1964).

⁴ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 95, 1544 (1964).

⁵ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 97, 506 (1966).

⁷ H. Völlenkle, A. Preisinger, H. Nowotny und A. Wittmann, Z. Kristallogr. 124, 9 (1967).

⁸ W. Jeitschko und E. Parthé, Acta Cryst. 22, 417 (1967).

⁹ A. Brown, Nature 206, 502 (1965).

¹⁰ Y. Fujino, D. Shinoda, S. Asanabe und Y. Sasaki, Jap. J. Appl. Phys. 3, 431 (1964).

¹¹ B. Borén, Arkiv Kemi, mineralog., geolog. 11 A, Nr. 10 (1933).

¹² A. Brown in B. Aronsson, T. Lundström und S. Rundquist (1965); Borides, Silicides, and Phosphides, pp. 20, 95, 110. London: Methuen.

nicht aufrechtzuerhalten, wenn man die Überstrukturlinien, d. h. die echte Zelle berücksichtigt. Es ergeben sich nämlich auch hier wieder die typischen relativ starken Verschiebungen, die zur Annahme verschiedener *c*-Parameter zwingen. Eine Abhängigkeit der *c*-Parameter untereinander ergibt sich jedoch dadurch, daß man zu einer ganzzahligen Vervielfachung der Unterzelle gelangt und in der Folge für andere Fälle eine solche sinngemäß zugrunde legt.

Die Auswertung der Pulveraufnahmen der hergestellten Mn-Si-Proben führt auf mindestens vier verschiedene Mn-Silicide im genannten Bereich, wobei eines identisch ist mit der bereits beschriebenen Phase $Mn_{11}Si_{19}$, ein zweites offensichtlich der von Brown¹² beobachteten Phase entspricht. Die ermittelten Gitterparameter sind zusammen mit denen zweier anderer Mn-Silicide in Tab. 1 angeführt. Die Formulierung der Phase $Mn_{11}Si_{19}$ ist aus einer vollständigen Strukturbestimmung an Einkristallen gesichert unter der naheliegenden Annahme einer vollen Besetzung der kristallographischen Punktlagen.

Tabelle 1. Gitterparameter und Zusammensetzung von Mangansiliciden der Formel $Mn_n Si_{2n-m}$

Mn _n Si _{2n-m}	n	m	$\frac{\left(\frac{2n-m}{n}\right)}{\pm 0,001}$ beob.	$\left(\frac{2n-m}{n}\right)_{\text{ber.}}$		[Å]	(^{¢'} [Å]	c'/a
Mn ₁₁ Si ₁₉	11	3	1,727	1,727	5,518	48,136	4.376	0.7930
$Mn_{26}Si_{45}$	26	7	1,730	$1,730_{7}$	5,515	113,36	4,360	0,7905
$Mn_{15}Si_{26}$	15	4	1,734	$1,733_{3}$	5,525	65,55	4,370	0,7909
$\mathrm{Mn}_{27}\mathrm{Si}_{47}$	27	7	1,741	$1,740_{7}$	5,530	117,94	4,368	0,7898

Die Daten für die von Brown¹² beobachtete Phase sind unter Berücksichtigung des bei Mn₁₁Si₁₉ und den analogen Verbindungen gewonnenen Bauprinzips dann am besten mit Mn₂₆Si₄₅ zu vereinbaren. Damit läßt sich die bemerkenswert große c-Achse sofort erklären. Die Übereinstimmung — 113,36 gegen 112,42 Å¹² — ist mit Rücksicht auf zwei ganz unabhängige Messungen in Anbetracht der vorläufigen Angaben nach Brown mehr als befriedigend.

Bestimmung der Kristallstruktur von Mn₁₅Si₂₆

Aus einer Probe, deren Pulveraufnahme weder mit der Phase $Mn_{11}Si_{19}$ noch mit $Mn_{26}Si_{45}$ identifiziert werden kann (in Tab. 1 mit $Mn_{15}Si_{26}$ bezeichnet), konnten Einkristalle isoliert werden. Naturgemäß zeigt sich auch bei analogen Weissenberg-Aufnahmen eine sehr große Ähnlichkeit zwischen jenen von $Mn_{15}Si_{26}$ und solchen von $Mn_{11}Si_{19}$. Um die typischen Unterschiede festzuhalten, wurde deshalb eine Vermessung der Reflexe für beide Phasen gegenübergestellt, wobei die Einheiten jeweils auf die UnterG. Flieher u. a.:

zellenreflexe bezogen werden und praktisch jeder systematische Meßfehler fortfällt. Das Ergebnis geht aus Tab. 2 a und b hervor. Man sieht daraus eindeutig, daß zwei verschiedene Kristallgitter vorliegen, welchen die oben angegebenen Vervielfachungen zukommen. Tab. 2 a entspricht demnach zweifelsfrei der Phase $Mn_{15}Si_{26}$, Tab. 2 b der Phase $Mn_{11}Si_{19}$.

Tabelle 2 a und 2 b. Auswertung der (h0l)-Reflexe von Weissenberg-Aufnahmen [100]

	Mangan-Silicid, Probe a										
h	k	l		$\sin^2 \theta_{beob.} \cdot 10^3$	$\sin^2 \theta_{be}$	er. • 10 ³	$ \Delta $ · 10 ³				
		n = 11	n = 15		n = 11	n = 15	n = 11	n=15			
0	0	38	52	374,09	371,40	373,96	2,69	0,13			
0	0	44	60	497,88	497,88	497,88	0	0			
1	0	11	15	50,59	50, 59	50,59	0	0			
1	0	27	37	208,83	206,97	208,80	1,86	0,03			
1	0	33	45	299,53	299,53	299,53	0	0			
1	0	49	67	640,90	637,01	640,30	3,89	0,60			
1	0	55	75	797,41	797,41	797,41	0	0			
2	0	38	52	451,75	449,28	451,84	$2,\!47$	0,09			
2	0	44	60	575,76	575,76	575,76	0	0			
					Mittelwert	$ \Delta \cdot 10^3$:	= 2,73	0,21			
				Mangan-Silic	id, Probe b						
h	k		l	$\sin^2 \theta_{beob} \cdot 10^3$	$\sin^2 \theta_b$	er. • 10 ³	$ \Delta $	• 10 ³			
		n = 11	n = 15		n=11	n = 15	n=11	n=15			
0	0	38	52	370,51	370,39	372,88	0,12	2,37			
0	0	44	60	496,48	496,48	496, 48	0	0			
1	0	11	15	50,54	50,54	50,54	0	0			
1	0	27	37	205,86	206,50	208,29	0,64	2,43			
1	0	33	35	298,78	298,78	298,78	0	0			
1	0	49	67	635, 24	635,37	638,54	0,13	3,30			
1	0	55	75	795,26	795, 26	795,26	0	0			
2	0	38	52	447,69	448,43	450,92	0,74	3,23			
2	0	44	4 60 574.52		574, 52	574, 52	0	0			
					Mittelwert	$arphi \mid \Delta \mid \cdot \; 10^3$:	= 0,41	2,83			

Aus den Auslöschungen ergibt sich die Raumgruppe $I42d-D_{2d}^{12}$ in Übereinstimmung mit den Bedingungen für das Auftreten bestimmter Raumgruppen in Abhängigkeit von den Formelindizes n und $2n-m^7$ (I42d bei ungeraden n und geradem 2n-m). Die Intensitäten wurden aus verschieden lang belichteten Weissenberg-Aufnahmen durch visuellen Vergleich mit einer geeichten Skala ermittelt und auf Lorentz-Polarisationsfaktoren korrigiert. Die Ermittlung der Atomparameter folgte weitgehend den Überlegungen, die zur Strukturbestimmung von Mn₁₁Si₁₉ geführt

Atom	Punktlage	x	Y	z
Mn (1)	4 (a)	0	0	0
Mn (2)	8 (c)	0	0	0,0665
Mn (3)	8 (c)	0	0	0,1333
Mn (4)	8 (c)	0	0	0,1995
Mn (5)	8 (c)	0	0	0,2667
Mn (6)	8 (c)	0	0	0,3327
Mn (7)	8 (c)	0	0	0,4010
Mn (8)	8 (c)	0	0	0,4650
Si (1)	16 (e)	0,2083	0,3434	0,0118
Si (2)	16 (e)	0,8418	0,1868	0,0310
Si (3)	16 (e)	0,3230	0,1682	0,0482
Si (4)	16 (e)	0,6750	0,3433	0,0672
Si (5)	16 (e)	0,1650	0,3150	0,0846
Si (6)	16 (e)	0,8070	0,1600	0,1045
Si (7)	8 (d)	0,3470	0,2500	0,1250

Tabelle 3. Punktlagen und Atomparameter für Mn15Si26

Tabelle 4. Vergleich der beobachteten und berechneten Strukturamplituden

(0	k	<i>l</i>)	F_{0}	$ F_c $	(0	k	l)	F _c	F _c	(0	k	<i>l</i>)	F_{0}	$ F_c $
0	0	44	103	193	0	2	52	400	470	0	4	30	187	161
		52	509	545			60	538	506			52	210	244
		60	1018	924	i		68	90	131			60	452	431
		68	98	84	ĺ		74	44	67			68	58	101
0	1	15	528	519	0	3	$\overline{7}$	67	124	0	5	7	205	188
		37	331	311	İ		15	1307	1233			15	288	260
		45	510	470			37	368	330			23	83	113
		53	94	93			39	57	46			29	73	94
		61	43	36			45	800	763			37	110	152
		67	253	270			49	43	38			45	229	181
		73	60	69	1		55	59	46	0	6	0	960	1053
		75	306	313			57	40	35			8	130	133
0	2	0.	557	581			67	326	277			14	52	68
		8	34	29			73	58	73			16	37	49
		16	25	31			75	538	443			22	139	120
		22	58	114	0	4	0	647	627			30	120	94
		30	68	78			8	66	70	0	7	.7	71	104
		44	81	111			22	181	226			15	208	240

hatten. Die Parameter wurden mit Hilfe von Fourier- und Differenz-Fourier-Synthesen (Projektion θyz) verfeinert. Mit den in Tab. 3 wiedergegebenen endgültigen Atomparametern erhält man für die beobachteten 54 (θkl) Reflexe einen *R*-Wert von 0,118 (Tab. 4). Die Berechnung der Strukturfaktoren erfolgte mit den Atomformamplituden aus den Inter-

G. Flieher u. a.;

national Tables¹³ und den isotropen Temperaturkoeffizienten: $B_{Mn} = 0.2$ bzw. $B_{Si} = 0.4$ Å.

Die Übereinstimmung in den Intensitäten läßt auch Tab. 5 für eine Pulveraufnahme erkennen.

Tabelle 5. Auswertung einer Pulveraufnahme von $Mn_{15}Si_{26}$ (CrK α -Strahlung). Die erste Spalte stellt ein allgemeines Schema zur Indizierung von Pulveraufnahmen der Phasen Mn_nSi_{2n-m} dar

(h'	k'	<i>l</i> ′)	(h	k	l)	$10^3 \cdot \sin^2 \theta$ ber.	$10^3 \cdot \sin^2 \theta$ beob.	Iber.	Ibeob.
1	0	п	1	0	15	111,7	111,7	44	mst
2	0	0	2	0	Ò	171,9	172,0	17	\mathbf{m}
2	1	n-m	2	1	11	251,9	251,5	28	mst^{-}
2	1	n	2	1	15	283,6	283,7	100	\mathbf{sst}
1	1	2 n-m	1	1	26	292,4	293,0	26	\mathbf{m}^+
2	2	0	2	2	0	343,9	344,3	37	\mathbf{mst}
2	2	m	2	2	4	348,8	348,8	7	s
1	1	2 n	1	1	30	360,8	361,3	54	$^{\mathrm{st}}$
3	0	n	3	0	15	455,6	455,1	50	\mathbf{st}
3	1	2(n-m)	3	1	22	577,6	577,3	4	SS
3	2	n	3	2	15	627, 5	628,1	5	s
1	0	3 n	1	0	45	661,3	661,1	8	ms^+
4	0	0	4	0	0	687,8	687,3	7	\mathbf{ms}
3	1	2 n	3	1	30	704,7	705,0	23	mst^{-}
2	1	3 n - m	2	1	41	728,2	728,5	11	m^+
4	1	n-m	4	1	11	767,7	767,9	10	m
4	1	n	4	1	15	799,4	798,8	30	\mathbf{st}
2	1	3 n	2	1	45	833,3	833,3	34	\mathbf{st}
4	2	0	4	2	0	859,7	859,7	48	$^{\rm st^+}$
4	2	m	4	2	4	864, 6	864,5	14	ms-d

 $\mathbf{d} = \mathbf{diffus.}$

Abgesehen von der verschiedenen Vervielfachung n ist der Aufbau der beiden Kristallstrukturen von $Mn_{11}Si_{19}$ und $Mn_{15}Si_{26}$ analog. Darüber hinaus ergeben sich in beiden Fällen praktisch die gleichen mittleren interatomaren Abstände. Für eine Koordinationszahl [8] berechnen sich diese wie folgt: Mn—Si = 2,439 Å für $Mn_{11}Si_{19}$ und 2,436 Å für $Mn_{15}Si_{26}$.

Projiziert man die Siliciumpositionen auf $xy\theta$, so ergibt sich ein quadratisch deformierter Kreis, der jedoch bei $Mn_{15}Si_{26}$ einen etwas größeren Durchmesser besitzt als bei $Mn_{11}Si_{19}$.

Schließlich sei noch auf die Existenz eines weiteren Mn-Silicids aufmerksam gemacht (Tab. 1), das auf Grund der Pulveraufnahme die längste c-Achse mit 117,94 Å unter den bisher beschriebenen Defekt-

¹³ International Tables for X-Ray Crystallography, the Kynoch Press, Birmingham, England (1952).

siliciden besitzt. Nach dem gleichen Bauprinzip ist dann dieser Phase die Formel $Mn_{27}Si_{47}$ zuzuordnen, was im Einklang mit dem Entwicklungsmodus T_nB_{2n-m} steht*. Es stellt sich heraus, daß die Existenzbereiche der verschiedenen Phasen (verschiedene Vervielfachung) einen Gang nicht nur mit der Konzentration, sondern auch mit der Temperatur aufzuweisen scheinen.

Bei Abschluß der Arbeit wurde uns ein Manuskript von H. W. Knott, M. H. Mueller und L. Heaton (Argonne National Laboratory, Illinois, USA) zugänglich, in dem ebenfalls über die Strukturbestimmung von $Mn_{15}Si_{26}$ berichtet wird. Die angegebenen Parameter stimmen mit den in dieser Arbeit gefundenen innerhalb der Fehlergrenzen überein. Diese Autoren sind allerdings der Auffassung, daß es sich bei den in der Literatur angegebenen Defekt-Disiliciden stets nur um $Mn_{15}Si_{26}$ handelt.

Die Berechnung der Korrekturfaktoren für die Intensitäten, der Strukturfaktoren und Fourier-Synthesen, sowie der interatomaren Abstände erfolgten mit eigenen ALGOL-Programmen (ALCOR-Illinois 7040). Die Rechenarbeiten wurden mit der IBM 7040-Rechenanlage des Institutes für numerische Mathematik der Technischen Hochschule Wien durchgeführt, wofür wir dem Institutsvorstand, Herrn Prof. Dr. H. Stetter, bestens danken.

* B =Si oder Ge usw.